
J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

ORBIT Code DevelopmentORBIT Code Development
Recent ProgressRecent Progress

Jean-Francois Ostiguy
Beam Physics Department

FNAL
ostiguy@fnal.gov

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Collaborators … Collaborators …

Jeff Holmes SNS/ORNL

Leo Michelotti BD/BP FNAL
Weiren Chou BD/BP FNAL

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Why ORBIT ?Why ORBIT ?
● We considered a variety of existing codes

● ORBIT was selected as our primary tool because of:
� Source code and documentation publicly available

� Well-developed diagnostics (tune footprints, moment evolution etc ..)

� Some validation at existing machines (PSR)

� Support for both decoupled transverse and longitudinal (21/2D)
and 3D space charge

� Support for parallel execution (MPI)

● Note: (Synergia) - essentially a derivative of IMPACT (developed to study
halo in high intensity linacs) is also under development at FNAL. The focus is
“full 3D” simulation in synchrotrons. Cross checks are useful and important
for validation of both ORBIT and Synergia.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Beam Physics Dept ParallelBeam Physics Dept Parallel
Linux ClusterLinux Cluster

32 2-CPU Nodes (1.4 Ghz AMD Athlon)
1 Gbyte RAM / Node
Gigabit Ethernet
Total Cost: 65 K$

Adequate for 21/2 D simulations.

100-1000 turns with O(105) macro particles.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Code DevelopmentCode Development

Recent development efforts at Fermilab have been focused on:

● Support for high order maps

● MAD parser

● A high level Python shell

● Correct tune Footprint Computation

● Better support for Acceleration (e.g.
mutipoles, transition etc…)

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Machine DescriptionMachine Description
● Until recently, ORBIT had been relying on MAD

or DIMAD to produce maps and lattice
functions. The lattice information is read from
MAD (ascii) output.

● As a consequence, ORBIT could not internally
recompute maps.

● The process of importing a machine description
into ORBIT is cumbersome and potentially error
prone (e.g. changes in MAD output file format
between different versions/platforms)

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

A Lex/Yacc based MAD parserA Lex/Yacc based MAD parser
● A Lex/Yacc-based MAD parser was developed in the BP

dept a few years ago for internal needs.

● Designed as a generic system usable either for off-line
translation to another human-readable description
language or for dynamic definition of objects.

● Few restrictions (no abbreviations, no action commands,
no use of undefined variables)

● Successfully validated on very large lattice files (e.g.
complete Tevatron lattice)

● BTW: The parser is also used by Synergia

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Mxyzptlk and Mxyzptlk and BeamlineBeamline
(L. (L. MichelottiMichelotti))

● mxyzptlk is a C++ class library to perform automatic
differentiation to a user-specified order n. It
provides overloaded operators, trig functions etc ...

● Beamline is a C++ class library build on top of
mxyzptlk. It provides facilities to create beamlines
hierarchies, compute lattice functions,
chromaticities, maps (to order n), map
concatenations etc ...

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Mxyzptlk ? Mxyzptlk ?
Superman's foe from the 5th dimension.
He will return to his own dimension
if he spells his name backwards ...

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Why Use the BEAMLINE Class ?Why Use the BEAMLINE Class ?
● Written in C++, just like ORBIT
● The same code automatically supports 1st ,

2nd and or order n maps if desired
● Support for arbitrary misaligments (tilt,

yaw, offset etc ..)
● Very few assumptionsThis may be relevant

for smaller rings.
● propagation physics and computation

completely under user control if
desired/necessary (e.g. thin kicks a la
Tpot)

● BTW: Synergia uses BEAMLINE to compute map coefficients.

Propagation is handled by IMPACT

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Beamline Class Library Beamline Class Library
Computational PerformanceComputational Performance

● Initial attempts at using the BEAMLINE library resulted in
discouraging performance degradation (1-2 orders of
magnitude !)

● In MXYZPTLK, polynomials are implemented as doubly linked
lists. Each list node contains a non-zero monomial coefficient
as well as an integer which can be uniquely mapped to actual
monomial exponents.

● evaluating a polynomial (map) implies traversing a linked list
(indirections) and recovery of the actual monomial exponents

● Especially at low orders, it was found necessary to store map
coefficients and invidual monomial exponents explicitely in
linear arrays in order to get satisfactory map evaluation
performance.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

PropagatorPropagator

● In the beamline library, the Propagator is a functor (i.e. a function
object) that determines how a particle is propagated through a beamline
element.

● Each element is assigned a default propagator, which can be overridden
by a user-supplied alternate

● When the element is a Map, the propagator operator() trivially
evaluates a polynomial in 6N variables for each phase space dimension .

● Because the Propagator is an object, an alternate (private) polynomial
representation can be instantiated by the propagator constructor.

● Using this technique, tracking using the facilities provided by the
beamline library has been verified to be as efficient as with existing
code.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

22ndnd Order Map Code ValidationOrder Map Code Validation
Simple test: observe the tune spread associated with 2 different momentum
distributions.

Independently calculated
tunes:
6.935 H, 6.662 V

Independently calculated
chromaticities:
-9.86H, -6.89V

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

ORBIT Code StructureORBIT Code Structure

● ORBIT is structured as “modules” controlled by a high
level interpreter, SuperCode

● SuperCode was designed to have a C++ -like syntax
● interface code generated from special interface

definition files by a program : MGen
● Modules could be written in f77, C or C++
● Exported interface from modules is the common

denominator between all these languages: static
functions and variables

● BTW: In ORBIT, the shell is an integral part of the
code. Input syntax checks and runtime diagnostics are
generated by the shell.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Why Preserve the Why Preserve the
Interpreter/Modules Interpreter/Modules

Structure ?Structure ?
● A high level interpreter allows for rapid implementation of custom

features. While the efficiency of a low-level language is required to
propagate large no of particles, diagnostics and a posteriori analysis can
benefit from high level language implementations because they are often
problem-specific.

● If efficiency becomes an issue, functionality implemented at the
interpreter level can be reimplemented into a compiled module without
affecting existing scripts.

● The interpreter/module structure promotes well-defined interfaces. This
makes it easy to contribute new functionality without deep knowledge of
the entire code.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Python ShellPython Shell

Problem: SuperCode is orphaned and poorly documented
Solution: use Python !

● Python is a mature scripting language
● Its object model is highly compatible with that of C++
● It supports operator overloading
● It supports the concept of exceptions
● Good tools are available for interface code generation
● A wealth of publicly available high quality python code is

available for reuse

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Python/C++ Interface Code Python/C++ Interface Code
GenerationGeneration

Currently are three systems available:
● SWIG (www.swig.org) by David Beazley, U of Chicago. Comprehensive system,

support for most scripting languages. While support for C is excellent, support
for C++ constructs has serious limitations.

● SIP (www.riverbankcomputing.co.uk) by Phil Thompson. Similar in philosophy to
SWIG, but python/C++ specific. Not well documented, requires special
interface files

● Boost.python (www.boost.org) by David Abrahams. Python/C++ specific.
Implemented as a C++ library (mostly header files). Uses template
metaprogramming techniques to generate interface code; no special program
needed beyond a C++ compiler.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Porting StrategyPorting Strategy

● Emulate existing SuperCode data types
(e.g. Vector, matrix, 3D array)

● As much as possible, emulate existing
syntax.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Boost.python Example 1Boost.python Example 1
#include <iostream>
#include <string>
#include "sc-types.h"
#include "sc-string.h"
#include "Python.h"
#include <boost/python/operators.hpp>
#include <boost/python/class.hpp>
#include <boost/python/module.hpp>
#include <boost/python/handle.hpp>
#include <boost/python/extract.hpp>
using std::complex;
using namespace boost::python;

void wrap_supercode() {
// ** ComplexMatrix **

python::class_<Matrix<complex<Real> > >("ComplexMatrix", init<int,int>())
.def(init<const Matrix<complex<Real> > >())
.def("get", &Matrix<complex<Real> >::get)
.def("set", &Matrix<complex<Real> >::set)
.def("__repr__", &Matrix<complex<Real> >::print)
.def("clear", &Matrix<complex<Real> >::clear)
.def("resize", &Matrix<complex<Real> >::resize)
.def(python::self + python::self)
.def(python::self - python::self)
.def(python::self * python::self)
.def(python::self ^ python::self)

;
}

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Boost.python Example 2Boost.python Example 2
void wrap_bump()
{

class_<Bump>("Bump", no_init)
.def("addIdealBump", &addIdealBump_wrap, "Add a Bump Node")
.staticmethod("addIdealBump")
.def("eFoldBump", &Bump::eFoldBump, "Routine used to apply an e-fold bump scheme

with specified start and end points")
.staticmethod("eFoldBump")
.def("eFoldBump2", &Bump::eFoldBump2, "Routine used to apply an e-fold bump scheme

with specified fixed and ramped magnitudes")
.staticmethod("eFoldBump2")
.def("interpolateBumps", &Bump::interpolateBumps, "Routine to do linear interpolation of the

bumps from input vectors")
.staticmethod("interpolateBumps")
.def("sizeBumpPoints", &Bump::sizeBumpPoints, "Sizes vectors used in iterpolating bump

points, see routine interpolateBumps")
.staticmethod("sizeBumpPoints")
.def_readwrite("xIdealBump", &Bump::xIdealBump)

// - "The x value of the ideal bump at a point in time (mm)",
.def_readwrite("xPIdealBump", &Bump::xPIdealBump)

// - "The x prime of the ideal bump at a point in time (mrad)",
.def_readwrite("yIdealBump", &Bump::yIdealBump)

// - "The y value of the ideal bump at a point in time (mm)",
.def_readwrite("yPIdealBump", &Bump::yPIdealBump)

// - "The y prime of the ideal bump at a point in time (mrad)";
.def_readwrite("bumpOn", &Bump::bumpOn)

// - "Switch indicating whether ideal bump is on (==1)";

….

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

ORBIT vs PyORBIT ORBIT vs PyORBIT

/bin/env python
import orbit

runName = orbit.String("Booster")
of1 = orbit.String(runName) +
orbit.String(".out")

hist = RealArray(1000)

for i in range(1000):
hist.set(i+1,0.0)

print 'Make a synchronous particle'

TSync = 0.400; # Kinetic Energy (GeV)
mSync = 1; # Mass (AMU)
charge = 1; # Charge number

orbit.Particles.addSyncPart(mSync, charge, TSync)
orbit.Particles.mainHerd =
orbit.Particles.addMacroHerd(100)

orbit.TransMap.FNALMapLine(file1, file2);

hist2 = hist2 + hist;

runName = "Booster";
of1 = runName + ".out";

RealArray hist(1000);
RealArray hist2(1000);

for i=1,1000 {
hist(i) = 0;

}

cout << “Make a synchronous particle” <<
“\n”;

TSync = 0.400; // Kinetic Energy (GeV)
mSync = 1; // Mass (AMU)
charge = 1; //charge number

addSyncPart(mSync, charge, TSync);
mainHerd = addMacroHerd(100);

FNALMapLine(file1, file2);

hist2 = hist2 + hist;

c
myfile.s myfile.py

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Tune ComputationTune Computation
● To efficiently produce a (tranverse) tune footprint, ORBIT computes tunes

by accumulating phase advance in normalized (Floquet) coordinates.
● This is an approximation since constant action contours are circular only in

the linear approximation.
● The normalized coordinates do not include dispersion. To compute the tune

of an off-momentum particle, the dispersive contribution to the trajectory
must be subtracted off.

● All collective fields are “frozen” during a tune computation i.e. they
influence the macro particles, but they are not updated.

● All RF cavities must effectively be turned OFF during a tune computation,
otherwise the momentum upstream and downstream of a cavity is
different, leading to erroneous dispersive corrections and erroneous tunes.
This was not automatically enforced in ORBIT. The effect is obviously
more noticible the larger dE/E per turn is.

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Phase AccumulationPhase Accumulation

θ1

θ2 X1,Y1

X2,Y2

Contour distorted by non-linearities

(X2,Y2) = M (X1, Y1)

In presence of nonlinearities, averaging

over multiple turns gives better results.

Weakly nonlinear map

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

AccelerationAcceleration

ORBIT currently provides some support for acceleration.
However, because SNS is an accumulation ring, investing time and
efforts to further develop the existing functionality has not been
the highest priority of the main developpers (justifiably so !).

The code has relied on externally computed maps, which by
definition, do not change during acceleration. While this may be an
acceptable approximation, a more realistic simulation should
include:

Saturation effects (energy dependent field defects)
Remanent field effects (constant field defects)
Transition crossing (phase jump, pulsed quadrupoles etc ...)

J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

Conclusions and StatusConclusions and Status

● FNAL MAD parser integrated into ORBIT
● Beamline maps tested
● 1st and 2nd order propagation optimized. Execution speed is on par

with the previous implementation.
● Python shell work complete and ready for testing.
● Fixed: tune footprint computation in presence of RF voltage.
● Fixed: incorrect scaling of longitudinal coordinates.
● Fixed: obscure memory management problems in mxyzpltk
● Work on improved support for acceleration has just begun

	ORBIT Code DevelopmentRecent ProgressJean-Francois OstiguyBeam Physics DepartmentFNALostiguy@fnal.gov
	Collaborators …
	Why ORBIT ?
	Beam Physics Dept Parallel Linux Cluster
	Code Development
	Machine Description
	A Lex/Yacc based MAD parser
	Mxyzptlk and Beamline(L. Michelotti)
	Mxyzptlk ?
	Why Use the BEAMLINE Class ?
	Beamline Class Library Computational Performance
	Propagator
	2nd Order Map Code Validation
	ORBIT Code Structure
	Why Preserve the Interpreter/Modules Structure ?
	Python Shell
	Python/C++ Interface Code Generation
	Porting Strategy
	Boost.python Example 1
	Boost.python Example 2
	ORBIT vs PyORBIT
	Tune Computation
	Phase Accumulation
	Acceleration
	Conclusions and Status

